Asymptotic analysis of periodically perforated nonlinear media close to the critical exponent
نویسنده
چکیده
We give a Γ-convergence result for vector-valued nonlinear energies defined on periodically perforated domains. We consider integrands with p-growth for p converging to the space dimension n. We prove that for p close to the critical exponent n there are three regimes, two with a non-trivial size of the perforations (exponential and mixed polynomial-exponential) and one where the Γ-limit is always trivial.
منابع مشابه
Asymptotic analysis of periodically-perforated nonlinear media at and close to the critical exponent
We give a general Γ-convergence result for vector-valued non-linear energies defined on perforated domains for integrands with p-growth in the critical case p = n. We characterize the limit extra term by a formula of homogenization type. We also prove that for p close to n there are three regimes, two with a non trivial size of the perforation (exponential and mixed polynomial-exponential), and...
متن کاملAsymptotic analysis of periodically-perforated nonlinear media at the critical exponent
We give a Γ-convergence result for vector-valued nonlinear energies defined on periodically perforated domains. We consider integrands with n-growth where n is the space dimension, showing that there exists a critical scale for the perforations such that the Γ-limit is non-trivial. We prove that the limit extra-term is given by a formula of homogenization type, which simplifies in the case of n...
متن کاملAsymptotic analysis of periodically-perforated nonlinear media
A well-known result on the asymptotic behaviour of Dirichlet problems in perforated domains shows the appearance of a ‘strange’ extra term as the period of the perforation tends to 0. In a paper by Cioranescu and Murat [10] (see also e.g. earlier work by Marchenko Khrushlov [17]) the following result (among others) is proved. Let Ω be a bounded open set in R, n ≥ 3 and for all δ > 0 let Ωδ be t...
متن کاملDiverging viscosity and soft granular rheology in non-Brownian suspensions.
We use large scale computer simulations and finite-size scaling analysis to study the shear rheology of dense three-dimensional suspensions of frictionless non-Brownian particles in the vicinity of the jamming transition. We perform simulations of soft repulsive particles at constant shear rate, constant pressure, and finite system size and carefully study the asymptotic limits of large system ...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کامل